

INDIAN INSTITUTE OF PETROLEUM AND ENERGY 2nd Floor, Main Building, A.U. College of Engineering (A), Andhra University, Visakhapatnam-530 003.

B.TECH SECOND YEAR SYLLABUS PETROLEUM ENGINEERING 2021 Batch

3rd SEMESTER

Sl. No.	Course Name	L	Т	Р	Credits	Remarks
1	Transform Calculus & Probability	3	1	0	3	
2	Numerical Methods	2	0	2	3	
3	Fluid Mechanics & Multiphase Flow	3	1	0	4	
4	Sedimentary & Petroleum Geology	3	1	0	4	
5	Drilling and Fracturing Technology	3	1	0	4	
6	Innovations Lab	0	0	3	2	
7	Workshop	0	0	3	2	
8	EAA III	0	0	2	P/F	
	Total	14	4	10	22	

4th SEMESTER

Sl. No.	Course Name		Т	Р	Credits	Remarks
1	Statistical Techniques	3	0	0	3	
2	Elements of Reservoir Engineering	3	1	0	4	
3	Hydrocarbon Production Engineering- I		1	0	4	
4	Geomechanics	3	1	0	4	
5	Well Logging	3	0	3	5	
6	Fuel Laboratory	0	0	3	2	
7	Petroleum Geology Lab	0	0	3	2	
8	EAA IV	0	0	3	P/F	
	Total	15	3	12	24	

3rd SEMESTER

Course Type	e Course Code	Name of Course	L	Т	Р	Credit			
	BS 20001	Transform Calculus & Probability	3	1	0	3			
Course Objective									
F b 2. T di 3. T	 To make the students understand the basic concepts of Laplace and Fourier transforms, Fourier series and the applications of these transform techniques in solving initial and boundary value problems. To introduce the fundamentals of probability theory and study different kinds of distributions and their properties such as mean, variance and moments, etc. To explore topics like functions of random variables, jointly distributed random variables and independent random variables. 								
Learnin	g Outcomes								
1. A	t the end of the cour	rse, the student will be at	ole to:						
te 3. U 4. L 5. K 6. F	 Solve initial and boundary value problems by using Laplace and Fourier transform techniques. Understand the approximation of a function in terms of Sine and Cosine functions. Learn all three types of definitions of a probability measure. Know the variety of distributions and their PMFs and PDFs Find the probabilities of a variety of random variables taking the values on the subsets of the set of Real numbers. Able to check whether the given sequence of random variables is independent or not. 								
Unit No.	Topics to be Cov	ered		Le	earning	Outcome			
1	transform, lineari existence of Lap second shifting pr of derivatives and Dirac-delta func differentiation and convolution theo functions, evaluat	m: Definition of Lapl ty property, conditions place transform, first operties, Laplace transfor integrals, unit step functi- tion and error functi- d integration of transfor prem, inversion, perio- ion of integrals by Lapl on of initial and bound	for ini and by orm tec on, on, ms, odic ace	tial and	boundary g Lapl	e able to, solve y value problems lace transform			

2	Fourier Series: Orthogonal and Orthonormal functions, periodic functions, representation of a function in terms of orthonormal functions, Fourier series representation of a function and its convergent properties, half range series, sine and cosine series, complex form of a Fourier series, Fourier integral representation of a function, Parseval's identity.	The student will be able to, understand the approximation of a function in terms of Sine and Cosine functions.
3	Fourier Transform: Fourier transform, Fourier sine and cosine transforms, linearity, scaling, frequency shifting and time shifting properties, self-reciprocity of Fourier transform, convolution theorem, Applications to boundary value problems.	The student will be able to, solve initial and boundary value problems by using Fourier transform techniques.
4	Probability: Sample space, events, classical, relative frequency and axiomatic definitions of probability, addition rule, conditional probability, multiplication rule, independence, total probability, Bayes' theorem.	The student will learn all three types of definitions of a probability measure and applications of Bayes' theorem
	Random variables: Discrete, continuous and mixed random variables, cumulative distribution, probability mass and probability density functions, Bernoulli, Binomial, Geometric, Poisson, Uniform, Exponential, Normal and Gamma distributions.	The student will learn the variety of distributions and their PMFs and PDFs
	Functions of random variables, expectation, variance, moments, jointly distributed random variables and joint cumulative probability distribution functions, jointly continuous random variables, independent random variables, covariance, sum of random variables.	The student will be able to check whether the given sequence of random variables is independent or not.

- 1. R. K.Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, Narosa publisher.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley publisher.
- 3. Sheldon Ross, A first course in probability, Pearson publisher.

- 1. W. Feller, An introduction to Probability theory and its applications.
- 2. Peter V, O'Neil, Advanced Engineering Mathematics, 6th edition.

Course Type	Course Code	Name of Course	L	Т	Р	Credit			
	BS 20007	Numerical Methods	2	0	2	3			
Course O	Course Objective								
pro	1. This course is to introduce the basic concepts of numerical methods for a variety of problems such as algebraic equations, linear systems of equations, approximation, ordinary and partial differential equations.								
Learning (Dutcomes								
 Uno Fino Fino Ana equ Iden 	 Analyze the variety of direct and iterative methods for solving systems of linear equations. Identify different methods to find the approximate integration by quadrature rules. 								
Unit No.	Topics to be Cov	ered		Lear	ming Ou	itcome			
	stability. Findin Bisection, Regula	onvergence, order, and g roots of equations: -falsi, Newton-Raphson, their convergence. Basic	appli to fi	rstand tl cability	ne nume of a par of a po	be able to, rical error and ticular method olynomial or a			
2.	Interpolation by polynomials: Lagrange and Newton divided differences methods, error of the interpolating polynomial, piecewise linear and cubic spline interpolation. Numerical differentiation and integration of functions, Rectangle, Trapezoidal and Simpson's rules, Composite rules, error formulae, Gaussian quadrature rules.					interpolate and			
3.	Matrices, vectors, Norms, ill-conditioning, System of Linear Equations, Gaussian elimination, Gauss-Jordan method, LU and Cholesky decomposition, Iterative methods: Gauss-Seidel and Gauss-Jacobi, Eigenvalue problems: power method, QR method, Gershgorin's theorem. Linear andThe student will be able to, analyz the variety of direct and iterative methods for solving systems of linear equations.					t and iterative			

	nonlinear Least Squares, Newton-Raphson Method in two variables.	
4.	Numerical Solution of ODE: Taylor's, Euler's, Modified-Euler, Runge-Kutta methods. Numerical Solutions of PDE: Heat, Wave and Laplace equations.	The student will be able to, solve ordinary and partial differential equations by finite difference methods.

1. S. D. Conte and Carl de Boor, Elementary Numerical Analysis- An Algorithmic Approach (3rd Edition), McGraw-Hill, 1980.

2. K. Atkinson, An Introduction to Numerical Analysis (2nd Edition), John-Wiley & Sons, 1989.

3. E. Kreyszig, Advanced Engineering Mathematics (8th Edition), John Wiley (1999).

References:

1. S.S. Sastry, Introductory Methods of Numerical Analysis - Prentice Hall of India.

Course Type	Course Code	Name of Course	L	Т	Р	Credit	
Core	BS 20002	Fluid Mechanics & Multiphase Flow	3	1	0	4	
Course (Objective						
		concept of fluid flow a low and fluid machinery.	nd its ap	plication	to cher	nical process	
Learning	Outcomes						
 At the completion of this course, every student should be able to: 1. Explain the basic concepts in fluid mechanics; describe the physics and formulate mathematical descriptions of viscous flows 2. Identify the fundamental concepts in boundary layer theory, and turbulence 3. Formulate physical model and mathematic model to solve typical fluids problems of engineering importance. 							
Unit 7 No.	opics to be Cove	ered	Learning Outcome				
Section A:	Section A:						

1.	Definition of Fluid, Lagrangian and Eulerian methods of description; Velocity Field: Streamline and stream function, Vorticity, Stress Field; Rheology: Newtonian/non-Newtonian Fluids.	Students will be introduced to various fluids and their properties.
2.	Viscous/Inviscid, Laminar/Turbulent, Compressible/ Incompressible, Internal/External, Rotational/Irrotational.	Students will acquaint with various flow field.
3.	Fluid Statics: Pressure variation in static fluids, manometer, capillary hydrostatics	Students will have a strong foundation on static fluid.
4.	Macroscopic mass and momentum balance using integral control volume method, Euler & Bernoulli equations, Internal Incompressible Viscous Flow. Fully developed laminar flow in pipes, Couette and annular flows; Hagen Poiseulle Equation.	Students will be able to apply Euler and Bernouli equation to compute pressure drop, friction losses in flow systems of different configurations.
5.	Eddy viscosity, Universal velocity profile; Skin and Form Friction, friction factor and friction factor versus Reynolds number relation, Calculation of Head Losses in pipes and fittings, Converging and diverging nozzles, Solution of single and multi-path pipe flow systems.	Students will be familiar with head losses in pipes, fittings, converging and diverging nozzles.
6.	Flow around immersed bodies, Drag and Lift, Drag coefficient.	Basic understanding and applications of external incompressible flow.
7.	Valves, Pumps, Compressors, Flow meters (Head/Area): Venturi, Orifice, Rotameter.	Students will be introduced to various flow measuring instruments and pumps.
Section	B:	

8.	Introduction to Hydrodynamics of Gas- liquid flow: Homogeneous flow model, Separated flow model, Bubble formation and dynamics, Mass bubbling and liquid entrainment.	Students will understand hydrodynamics of gas-liquid and liquid-liquid two-phase flow system.
----	---	---

- 1. Introduction to Fluid Mechanics by R. W. Fox & Alan T. McDonald, Wiley; 6th edition (2003)
- 2. Fundamentals of Multiphase Flow by C. E. Brennen, Cambridge University Press; 1st edition (2009)

- 1. Fluid Dynamics and Heat Transfer by James G. Knudsen and Donald L. Katz, McGraw-Hill; First Edition (1958)
- 2. Coulson & Richardson's Chemical Engineering: Fluid Flow, Heat Transfer & Mass Transfer, Vol.1., Butterworth-Heinemann; 6th edition (1999)

Cours Type	Course Code	Name of Course		L T P		Р	Credit		
Core	PE20001	Sedimentary & Petroleum Geo	logy	3	1	0	4		
Course	Course Objective								
	 The primary objective of the course is to introduce the students with the origin, accumulation and migration aspects of hydrocarbons, depositional environment of sediments, and their stratigraphic positions. Also student will gain knowledge about some hydrocarbon fields in India. 								
Learni	ng Outcomes								
2. 3. 4.	3. Chemical and physical properties of hydrocarbons.								
Unit No.	Торі	cs to be Covered		Learı	ning (Outcor	me		
1.	-	n, sedimentary rocks, clastic rocks, evaporates, sedimentary	Seameniology for boin clashe and						
2.	0 1	n, carbon cycle, formation of a seal and cap rocks, distribution n a trap, trap types.	Brief idea about the hydrocarbon system.						

3.	Physicochemical properties of petroleum, Source rock characteristics, types, preservation of organic matter, formation and maturation of Kerogen. Primary and secondary migration of hydrocarbons.	Understand types of organic matter, their transformation to kerogen and classification of kerogen on the basis of H:C ratio.
4.	Subsurface mapping, other parameters of relevance in subsurface environment like Temperature, Pressure, Stress, Lithostatic and Hydrostatic pressure, overpressure, subsurface waters.	Understand the subsurface environments.
5.	Reservoir porosity, permeability, Reservoir continuity, Diagenesis and Reservoir Quality, carbonate and fractured reservoirs.	

- 1. Elements of Petroleum Geology. R. C. Shelley. Academic Press; 3rd edition (November 2014).
- 2. Principles of Sedimentology and Stratigraphy. Sam Boggs Jr. Pearson; 5th edition (February 2011).

- 1. Geology of Petroleum. Levorsen A. I. CBS; 2nd edition (January 2004).
- 2. Tissot, B.P. and Welte, D.H. (1984): Petroleum formation and occurrence, Springer–Verlag.

Cou	urse Type Course Name			L	Τ	Р	Credit
		Code	of				
			Course				
The	TheoryPE 30003Drilling and Fracturing Technology310						4
Cour	se Objective						
1.	The aim of the	ne course is to	p provide students with a fundamental understar	nding	g of j	petro	leum well
	drilling and fi	racturing proc	cedures, its mechanics, and design methodology.				
2.	-		ew of drilling rig operations and related equipme				-
		-	rill-string design; drill bit technology; drilling h	•			-
	• •	-	fracture pressure calculations; basic casing des	ign;	basi	c we	ell control;
	well planning	.					
3.	It also gives a	an understand	ing of fracturing mechanics and its fluids.				
Lear	ning Outcome	es					
1.	Understand th	he concepts a	and equipment required in hoisting systems, incl	ludir	ıg de	tern	nination of
	loads and hoi	sting power,	the mechanics and design of drill bits.				
2.	Explain the p	process of mu	d preparation, circulation and cleaning, including	g un	derst	andi	ng of mud
	types, mud chemistry and mud hydraulics.						
3.	Explain the p	rocess and in	portance of casing design.				
4.	Utilise knowledge of key safety features in well control procedures.						
5.	Explain well problems and their solutions.						
6.	Explain the m	nechanics of f	fracturing, fracturing fluids and its proppants.				

Unit No.	Topics to be Covered	Learning Outcome
-------------	----------------------	------------------

1	Well Planning: Introduction to oil well drilling, Drilling planning approaches. Preparation of Well Plan, Geotechnical Order (GTO).	Understand well planning procedure.
2	system, draw works drum; top drive drilling; well tubular; drill bits and bit mechanics; rock- tool interaction, methods	Understand the concepts and equipment required in hoisting systems, including determination of loads and hoisting power, the mechanics and design of drill bits.
3	Drilling fluid classifications, characteristics, additives, compatibility with borehole condition. Hydraulic models, mud pumps, flow rate and pressure calculations. Mud	Explain the process of mud preparation, circulation and cleaning, including understanding of mud types, mud chemistry and mud hydraulics.
4	3	Explain the process and importance of casing design.
5	Well problems and solutions: Fatigue failure, Pipe sticking, Lost-circulation, Sloughing	Utilise knowledge of key safety features in well control procedures.
6		Explain well problems and their solutions.
7	Hydraulic fracturing: Breakdown pressure; fracture propagation theories; fracture direction, geometry, width, conductivity; Leak-off, tip screen- out; fracturing of horizontal wells. Fracturing fluid: characteristics, additives, Properties of proppant and its transport.	

- 1. Petroleum Engineering: Drilling and Well Completion: Carl Gatlin.
- 2. Applied Drilling Engineering: Adams T Bourgoyane.
- 3. Drilling Engineering: A complete Well Planning and approach.
- 4. Hydraulic Fracturing, Michael Berry Smith, Carl Montgomery.

- 1. Well Control Problems Solutions: Neal A J.dams.
- 2. Oil Well Drilling: H Rabia.
- 3. Oil Well Drilling Technology: Mc. Gray& Cole.

Cours e Type		Name of Course	L	Т	Р	Credit			
ciyp	Coue								
Core	BS20006	Workshop	0	0	3	2			
Cours	Course Objective								
2. T 3. T	To identify the har	s of workshop engineering pra nd tools and instruments and a cal skills by performing the	cquire 1						
Learn	ing Outcomes (L	0)							
s r 2. I	heetmetal workin naterials. Learn to use differ	e able to use different manufact g, etc) processes required to r ent measuring, marking, cuttin various safety precautions wh	manufa	cture a used i	produo n work	ct from the raw shop.			
Unit No.	Topics to be Co	overed	Learning Outcomes						
1	Safety Precaut	ions in workshop	Studen	ts wil	l get 1	to know about			
	Welding Shop		various safety precautions while working in workshop.						
	 To study about various welding processes and the tools and equipment's use in welding shop. To prepare a joint (lap/ butt/ T) using gas welding. 		Students will learn about weldin methodology and metal joinin			metal joining			
2	Foundry Shop				-	to know about			
	in foundry shop4. To prepare a	at tools and equipments use and how to make a mould. In aluminium sand casting prepared by the students.	mould	makin	g and f	oundry process.			

3	 Machine Shop 5. To study about various machine tools (lathe, milling, shaper, drilling, grinding and EDM drill) available in machine shop. 6. To study about various machining process performed on lathe machine tool in detail and to study the cutting tools used for various machining processes in lathe. 7. To perform facing, step turning, taper turning and knurling on a given work-piece material. 	Students will get to know about using various machine such as Lathe, milling, grinding. In lathe machine they will perform various turning operations
4	 To study about the carpentry, fitting and sheet-metal shop. 8. To study about the job holding devices, machine tools. 9. To study about the measuring, marking, cutting and plain tools. 	Learn to use different measuring, marking, cutting tools used in workshop.

TEXT BOOKS:

- 1. Hajra S. K. and Chaudhary, Workshop Technology I & II, Khanna Publisher.
- 2. Raghuvansi B. S., Workshop Technology I & II.

REFERENCES:

- 1. Chapman W. A. J., Workshop Technology Vol. 1, 2, 3 & 4, Butterworth-Heinemann.
- 2. Gupta I. C., Engineering Metrology, Dhanpat Rai & Sons.
- 3. Beckwith Thomas G., Mechanical Measurements, Narosa Publishing House.
- 4. Gupta K. M., Material Science and Engineering, Umesh Publication.
- 5. Callister W. D., Material Science & Engineering, John Wiley & Sons.

4th SEMESTER

Course Type	Course Code	Name of Course	L	Т	Р	Credit
	BS 2006	Statistical techniques	3	0	0	3
Course Ot	ojective					
solv pres	ing engineering pr ent data. It will dev	this course is to introd oblems. Students will l velop students' ability in ting future observations	earn to n statistic	organize cal mode	, describ ling, inf	e, analyze, and
Learning C	Outcomes					
give 3. Test anal 4. Prec 5. Lean line	n random sample. a hypothesis by mysed. lict the outcome of rn the associated tea	interval estimations of fr easuring and examining a response variable by t chniques for selecting, t ls using data. Understan ion means.	a randor using sev esting ar	n sample veral exp id valida	e of the p lanatory ting simp	oopulation being variables. ple and multiple
Unit No.	Topics to be Cov	ered		Lear	ning Ou	tcome
1. Sampling distributions: Chi-square, t and F distributions, random sample, sample mean and sample variance, the central limit theorem, distributions of the sample mean and the sample variance for a normal population.		the di samp		ns of sa	e to, understand mple mean and	
	the method of mon maximum like confidence interval sample and two	asedness, consistency, nents and the method of elihood estimation, ls for parameters in one sample problems of s, confidence intervals blems.	d of point and interval estimations ion, functions of unknown parameters fro one the given random sample. of		estimations of parameters from	

3.	Testing of Hypotheses: Null and alternative hypotheses, the critical and acceptance regions, two types of errors, power of the test, the most powerful test and Neyman-Pearson fundamental lemma, tests for one sample and two sample problems for normal population (t, F, Z tests), tests for proportions, Chi-square goodness of fit test and its applications, problems.	The student will be able to, test a hypothesis by measuring and examining a random sample of the population being analysed.
4.	Regression Analysis: Simple linear regression (Description of the model, Least squares estimation, properties of the least square estimators, confidence interval and hypothesis testing for the model parameters, correlation); Multiple linear regression model (Description of the model, matrix approach of Least squares, properties of the least square estimators, confidence interval and hypothesis testing for the model parameters).	The student will be able to, predict the outcome of a response variable by using several explanatory variables. The student will learn the associated techniques for selecting, testing and validating simple and multiple linear regression models using data.
5.	Design and Analysis of Experiments: Analysis of variance (One-way classification of fixed effect model, comparing variances, pair wise comparison), randomized complete block design, Latin square design, random effect models, Factorial design, blocking and confounding, Nested and split plot design, Examples from chemical process.	The student will be able to, understand the testing of hypotheses corresponding to the multiple population means.

- 1. Sheldon M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, Elsevier.
- 2. D C Montgomery, Design and Analysis of Experiments, Wiley 2014.

- 1. J. S. Milton & J. C. Arnold, Introduction to Probability and Statistics, McGraw Hill.
- 2. Alexander Mood, Franklin Graybill D. Boes, Introduction to the theory of Statistics, McGraw Hill.

Course Type	Course Code	Name of Course	L	Т	Р	Credit
Core	PE20007	Elements of Reservoir Engineering	3	1	0	4

Course Objective

1. The objective of this course is to introduce the fundamental concepts and essential elements involved in reservoir engineering, which helps the students to apply the learnt concepts for performing any advance analysis in reservoir engineering discipline.

Learning Outcomes

- 1. Different properties of reservoir rock and reservoir fluids which governs the oil recovery process
- 2. Concepts and mechanisms involved in flow of multiphase fluids in reservoir rocks.
- 3. Phase behaviour of hydrocarbon fluids during its flow from reservoir to surface and classification of reservoirs based on initial P-T conditions.
- 4. Concepts and mechanisms of different oil recovery process.
- 5. How reserves are classified, and different methods adopted for estimation of reserves.

Unit No.	Topics to be Covered	Learning Outcome
1.	Introduction to reservoir engineering : Generation, migration and accumulation of hydrocarbon, types of reservoir rock; role of reservoir engineers.	Students will get to know about the importance and role of reservoir engineers in upstream activities.
	Properties of reservoir rock: porosity; permeability; saturation; Darcy's equation – Definition and limitations; Klinkenberg effect; laboratory determination of porosity and	Students will develop a broad understanding about reservoir rock and its properties.
	permeability; calculation of average permeability for bedding planes; rock compressibility.	Students will also learn about the experimental procedure and equations used to evaluate the reservoir rock properties.
2.	Properties of reservoir fluids : Reservoir fluid types; density, viscosity, API gravity; fluid compressibility; bubble point pressure; dew point pressure; saturated and under saturated reservoirs; standard temperature and pressure conditions; Formation Volume Factor for oil, gas and water; solution gas oil ratio; gas oil ratio, water oil ratio.	Students will learn about different properties of reservoir fluids at reservoir and surface conditions.
3.	Multiphase fluid flow in reservoirs: Relative permeability; Darcy's equation for multiphase flow; wettability; capillary pressure; imbibition and drainage; IFT; Flow regimes within reservoir – transient, steady state and pseudo-steady state	Students will learn about the concepts involved in the flow of multiphase fluid in petroleum reservoirs.
4.	Phase behavior of hydrocarbons:	Students will understand:

	Construction of P-V and P-T diagram for pure	How P-T diagram for hydrocarbon
	hydrocarbon substance and multicomponent	mixtures are constructed from lab
	hydrocarbon mixtures from PVT cell studies; phase	experiments.
	behavior diagram of hydrocarbon mixtures; phase	How the hydrocarbon phase
	change of hydrocarbon fluid during its flow from	changes with w.r.t pressure and
	reservoir to surface; classification of reservoirs based	temperature.
	on initial P-T conditions – undersaturated oil	Reservoirs are classified based on
	reservoir, gas-cap reservoirs, reterograde condensate	initial P-T conditions.
	gas reservoirs, wet gas and dry gas reservoirs;	How to calculate compressibility
	formation of primary and secondary gas cap;	factor for single and
	determination of compressibility factor for single	multicomponent hydrocarbon
	component and multicomponent hydrocarbon gases	gases.
	by graphical and EoS modelling methods.	
5.	Primary, secondary and tertiary oil recovery process;	Students will understand:
	primary driving mechanisms – rock and fluid	Concepts and mechanisms involved
	expansion, gas cap drive, solution gas drive, water	in different oil recovery process;
	drive, gravity drainage and combination drive;	How to derive material balance
	derivation of material balance equation for primary	equation and to use decline curve
	driving mechanisms; classification of reserves;	analysis for estimating the oil
	reserves estimation method – analogy, volumetric,	reserves and oil recovery
	material balance, reservoir simulation, decline curve	performance; and
	analysis – hyperbolic, harmonic and elliptic; PRMS	How reserves are classified as per
		PRMS and how the reserves
		volume are estimated by different
		methods.

- 1. Reservoir Engineering Handbook: Tarek Ahmed.
- 2. Petroleum Reservoir Engineering, Physical properties: James W. Amyx, Daniel M. Bass, Jr., Robert
- L. Whiting.
- 3. Fundamental of Reservoir Engineering: Dake L.P.

- 1. Properties of Petroleum Reservoir Fluids: Emil J. Burcik.
- 2. Applied Petroleum Reservoir Engineering: Craft B.C. and Hawkins M.F.

Course Type	Course Code	Name of Course	L	Т	Р	Credit
UG	PE 30002	Hydrocarbon Production Engineering- I	3	1	0	4

Cours	se Objective
1.	To impart fundamental knowledge related to fluid flow from reservoir to surface, identification of parameters affecting flow from reservoir to surface facilities and optimization of the parameters.
2.	To learn concepts related to well completion and workover practices, and design of hydrocarbon processing equipment at the surface.

Learning Outcomes

- 1. Determination of Productivity Index and flow potential of the wells.
- 2. Generation of IPR, TPR curves for the wells and optimization.
- 3. Determination of surface operating point for the given field data.
- 4. Diagnose and solve problems encountered in production wells.
- 5. To gain basic knowledge of well completion, workover and servicing techniques.

Unit	Topics to be Covered	Learning Outcome
No.		
1.	Well completion techniques; servicing and work-over operations, on shore and off shore.	 Cased hole and open hole completions, selection and use of completion and workover fluids. Components of Christmas tree, valves, flowlines. Well problems identification and solution. Components of CTU, workover rig and snubbing unit.
2.	Production from undersaturated, two phase, and natural gas reservoirs; steady state and transient flow, pseudosteady state flow. Software related to Production /Decline Curve	 Significance and application of IPR. Flow equations for natural gas reservoir.
3.	Well deliverability; Inflow and vertical flow performance; Nodal Analysis, horizontal wells; material balance and production forecasting; production decline analysis.	 Significance of TPR, and gradient curves. Basic concepts and practice problems related to well deliverability, nodal analysis, decline curve analysis.
4.	Well bore flow performance: two phase flow regimes, pressure gradient models, hold-up behavior, flow in horizontal well bore and in chokes.	 Basic concepts and practice problems for two phase flow in horizontal and vertical wellbore. Sonic and sub sonic flow equations and concepts.
5.	Design of surface gathering system, crude stabilization, phase separation, dehydration, gas sweetening, produced water treatment, crude storage, evaporation loss and safety systems.	Design and concepts of separators, heater treater, dehydration units. Basic knowledge of processing of crude oil and natural gas in the field. Significance of VRU.

Text Books:

- 1. Economides M.J., Hill A.D., Economides C.E., Zhu D., Petroleum Production Systems, Prentice Hall / Pearson Education India 2012.
- 2. Guo B., Lyons W.C., and Ghalambor A., Petroleum Production Engineering: a Computer Assisted Approach, Gulf Professional Publishing 2011.

- 1. Arnold K. and Stewart M., "Surface Production Operations", Vol. I and II, Gulf Professional Publishing, 2008.
- 2. Beggs H.D., Production Optimization using Nodal Analysis. OGCI Publications. 1991.

Cours Type		Name of Course	L	Т	Р	Credit		
Core	PE20003	Geomechanics	3	1	0	4		
Cours	Course Objective							
mecha hydrau	The goal of this course is to introduce fundamental topics of continuum mechanics and rock mechanics and their dedicated applications (poroelastic deformation, reservoir operation, hydraulic fracturing, wellbore stability, compaction, subsidence, etc.). The main objective is to quantify response of reservoir rock during drilling and production.							
Learn	ing Outcomes							
1. 2.	 Understand and apply fundamental continuum mechanics concepts for oil and gas reserver rock formation. Critically analyse the underlying physics, concepts, assumptions and arguments, ar develop a geomechanical model of a reservoir to address a wide range of problems that a encountered during the life cycle of a hydrocarbon reservoir. 							
Unit No.	Topics to be Covered	Learning Ou	Learning Outcome					
1.	Physico-mechanical properties of rocks;	permeability, etc. Rock mechanical	Rock physical properties include density, porosity, and permeability, etc. Rock mechanical properties mainly include elastic modulus, Poisson's ratio, and rock strength, In-situ stresses					
2.	Elasticity.	Strain, Stress. Constitutive Equations, Elastic properties, stress equilibrium	Constitutive Equations,					
3.	Poroelasticity.	Biot's poroelastic theory for static p	Biot's poroelastic theory for static properties, The effective stress concepts, Poroelastic relations, Pore volume					
4.	Failure Mechanics.	Basic concepts, Compressive strength criteria, Shear failure criterion, Failure criteria depending on the intermediate stress, Pore collapse.						
5	Geological aspects or rock mechanics.	of Rock mass classification, In-situ stre	Rock mass classification, In-situ stresses.					
6	Stresses around borehole, and borehole failure criteria.	In situ stresses and stress distribution around openings; Stresses around borehole: general linear elastic solution, poroelastic formation; Borehole failure criteria.						
7	Reservoir Compaction: Subsidence and wel problems.	Subsidence and well problems; Stress change in depleting reservoir, Consolidation theory.						

- Zoback, Mark D. Reservoir geomechanics. Cambridge university press, 2010.
- Fjar, Erling, Rune Martin Holt, Per Horsrud, and Arne Marius Raaen. Petroleum related rock mechanics. Elsevier, 2008.

- Jaeger, John Conrad, Neville GW Cook, and Robert Zimmerman. Fundamentals of rock mechanics. John Wiley & Sons, 2009.
- Coussy, Olivier. Poromechanics. John Wiley & Sons, 2004.

Course Type	Course Code	Name of Course		L	Т	Р	Credit	
Core	PE 20005	Well Logging		3	0	3	5	
Course	Course Objective							
 The course gives insights into the role of borehole measurements in the search for and evaluation of hydrocarbon reservoirs. The course covers a number of measurement methods, and how these are used to determine important rock parameters such as porosity, permeability, water saturation and the rock types along the borehole. 								
Learnin	g Outcomes							
 Fundamental petrophysical concepts and equations. How does the composition of the rock influence the measurements we do and important petrophysical parameters like porosity, permeability and saturation. The most important log measurements used in boreholes: Resistivity, natural gamma radiation, neutron porosity, density, photoelectric absorption, acoustic measurements, formation pressures, nuclear magnetic resonance and more. The measurement environment in a borehole and environmental corrections of the data. Find how the measured properties can be used to determine the porosity, permeability, water/hydrocarbon saturation, shale content and rock type. 								
Unit No.	Topics to be Covered Learning Outcome							
	Fundamental concepts.							

Unit No.	Topics to be Covered Learning Outcome					
1.	Introduction to well logging, Logging operations: Tools and Methods. Theory and physics of well-log measurements.	 Fundamental concepts. Theory, Physics and tools of Resistivity, natural gamma radiation, neutron porosity, density, photoelectric absorption, acoustic measurements, formation pressures, NMR logging 				
2.	Depth correlation, log interpretation, core-log integration, rock typing, and resource determination.	Interpretation of well logs for followings: • Rock typing				

3.	Quantitative interpretation of well logs to estimate rock and fluid properties, including porosity, net pay thickness, fluid saturations, fluid type/ density, volumetric/ weight concentrations of minerals, and dynamic petrophysical properties such as permeability and saturation-dependent capillary pressure.	Rock propertiesFluid properties
4.	Well-log interpretation in clay-free, shaly-sand, and organic-shale formations.	
5.	Multiwell correlations with application to volumetric calculations.	Multiwell correlations and volumetric calculations.
6.	Development of computer models for well-log analysis. Demonstration of computer software for well logging.	Computer models and software for well log analysis and interpretation.

1. Theory, Measurement, and Interpretation of Well Logs. *Zaki Bassiouni*, SPE Textbook Series, Vol. 4, (1994).

References:

- 1. Geological Interpretation of Well Logs. *Malcolm H Rider*, Whittles Publishing Services (January 1999).
- 2. Well Logging and Formation Evaluation (1st Edition). *Toby Darling*, Gulf Professional Publishing (February 2005).

Course Type	Course Code	Name of Course	L	Т	Р	Credit	
Basic	BS 20009	Fuel Laboratory	0	0	3	2	
Course Objective							
An ability to identify, analyse and characterize the fuels.							
Learning Outcomes							
 To give an insight into fuel systems. Understand the fuel product specifications, various test methods used to qualify different types of fuels. Describe various perspectors that are utilized to characterize the fuels. 							

3. Describe various parameters that are utilized to characterize the fuels.

Unit No.	Topics to be Covered	Learning Outcome			
1.	ASTM distillation.	Determination of distillation characteristic (boiling, volatility) of petroleum products.			

2.	Reid vapour pressure (RVP).	Determination of volatility of petroleum products.
2		<u> </u>
3.	Gum content (existent).	Characterization of nonvolatile residue
		present in fuels.
4.	Smoke point.	Identification of smoking tendency of
	1	light petroleum products.
		8 I I I I I I I I I I I I I I I I I I I
5.	Aniline point.	Characterization of degree of
		aromaticity of petroleum products.
6.	Flash point.	Identification of fire hazardous of
		fuels.
7.	Moisture content by Dean & Stark method.	Determination of % of moisture
		present in liquid fuels.
8.	Kinematic viscosity by Dynamic viscosity.	Identification of viscosity, film
		thickness of liquid lubricants and
		hydrocarbon fuels.
9.	Redwood viscometer.	Identification of Kinematic viscosity
		of a liquid fuel sample.
10.	Pour point.	Characterization of the ability fuels to
		flow under cold operating conditions.
11.	Conradson / Ramsbottom Carbon residue.	Characterization of % carbon residue
		in fuels.
12.	Rotational viscometer.	Identification of viscosity of liquid
		lubricants and hydrocarbon fuels.
		-
13.	Gaseous fuels: Orsat	Identification of oxygen, carbon
	Analysis.	monoxide and carbon dioxide content
		in fuels.
14.	Calorific Value by Junkers calorimeter.	Determination of heat of combustion
	-	and the calorific value of gaseous
		fuels.
15.	Gas chromatography.	Analysis of composition of fuels.
		· ·

- 1. Theory, Measurement, and Interpretation of Well Logs", Bassiouni, SPE Textbook Series, Vol. 4, (1994).
- 2. Fuels & Combustion by Samir Sarkar, 3rd Edition, Universities Press.ISBN 9788173716690.

References:

1. Fuels & Combustion by SP Sharma & Chander Mohan, Tata McGraw Hill Education, ISBN 9780070966277.

Course Type	Course Code	Name of Course		L	Т	Р	Credit		
Lab	20008	Petroleum Geology Lab		0	0	3	2		
Course O	Course Objective								
roc	1. To train the students in field observations and measurements, identification of sedimentary rocks, preparation and interpretation of different types of maps focusing on petroleum-bearing formations.								
Learning	Outcomes								
of t	he formations, di	able to independently locate themse stinguish different types of petroleu ontour and isopach maps based on f	m sou	rce, re			-		
Unit No.	Т	opics to be Covered		Lea	rning	Outc	ome		
1.	Megascopic and sedimentary roo	d microscopic study of common eks.	Distinguish different types source, reservoir and cap rocks based on megascopic and microscopic observations.				ap rocks		
2.	Geological map Measurement of true thickness of	he geological map of the area.	arent and in the field, take strike and dip of the formations; calculate true thickness of outcrops; interpret						
3.	Ŭ	litho stratigraphic columns, litho	 Correlate different strata based on lithologic set-up; Describe the utility of stratigraphy in hydrocarbon exploration. 						
4.	of Oil Water Co	of isopach map and depositional	and interpret the deformation				mation identify eparation		

- 1. Analysis of Geological Structures by N.J. Price and J.W. Cosgrove.
- 2. Basic methods of Structural Geology by S. Marshak and G. Mitra.

3. Atlas of Sedimentary Rocks Under the Microscope by A. E. Adams, C. Guilford, and W. S. MacKenzie.

- 1. Mapping of Geological Structures by K. McClay.
- 2. Principles of Stratigraphy by C.O. Danbar and J. Rodgers.
- 3. Sedimentary Rocks in the Field: A Colour Guide by D. A. V. Stow.
- 4. Stratigraphy: Principles and Methods by Schoch, Robert, M.
- 5. Elements of petroleum geology by Selley, R.C.